North Road Community Primary School

 Enjoy learning, succeed in lifeNorth Road Community Primary School Maths and Progression in Calculation Policy

November 2020

Why do we learn mathematics at North Road?

Mathematics teaches children how to make sense of the world around them through developing their ability to calculate, reason and solve problems. At North Road we believe that all children can achieve in maths through self-belief and effort and encourage a 'can do' attitude at all times.
We promote enjoyment of learning through practical activity, exploration and discussion and encourage children to understand the importance of mathematics in everyday life, whether it be calculating change or percentage decreases when shopping, weighing precise amounts of ingredients when following a recipe or measuring a specific area of flooring to carpet.

What does maths look like at North Road?

Our main aim at North Road is to promote confidence and competence in maths by creating a positive learning environment where the children are not afraid to make mistakes and are encouraged to use the 'Power of YET' if they are unsure of a mathematical concept.
We want our children to become fluent in solving calculations with the four rules of number and seek to provide them with a variety of strategies to enable them solve a range of problems.
Small steps, and a style of teaching, whereby we adopt an 'I do/we do/you do’ approach, are encouraged and supported and we ensure there is challenge for all children through our 'Try it!' 'Use it!' ‘Deepen it!’ teaching sequence.
'Try it' tasks aim to improve the children's fluency of the skill.
'Use it' tasks challenge the children to draw on and apply the skills they have achieved in the 'Try it' tasks.
'Deepen it' tasks require the children to explain their understanding.

We encourage the use of practical equipment and visual images, such as Numicon, Base 10, number lines and the bar model, to support the children's learning and make the maths teaching accessible to all. Through mathematical talk, we encourage children to develop the ability to articulate, discuss and reason their mathematical thinking.

Progression in the use of manipulatives to support learning

Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real-life objects						
0-9 digit cards						
Number track to 10	Number line to 20	Number line to 100	Number line to 100	Number line including negative numbers	Number line including negative numbers	Number line including negative numbers
Numbered counting stick	Counting stick					
Tens frame	Tens frame	Tens frame				
	Place value charts Tens and ones	Place value charts Hundreds, tens and ones	Place value charts Thousands, hundreds, tens and ones	Place value charts - Ten thousands, thousands, hundreds, tens, ones and tenths	Place value charts to a million and three decimal places	Place value charts to 10 million and three decimal places
Interlocking cubes Use one colour to represent one amount	Interlocking cubes - Use one colour to represent one amount	Dienes	Dienes	Dienes	Dienes	Dienes
			Place value counters	Place value counters	Place value counters	Place value counters
	Place value arrow cards - tens and ones	Place value arrow cards - tens and ones	Place value arrow cards - H, T, O	Place value arrow cards - Th, H, T, O	Place value arrow cards	Place value arrow cards
Part-part-whole mat	Part-part-whole mat	Part-part-whole mat	Part-part-whole model	Part-part-whole model	Part-part-whole model	Part-part-whole model
Bar model with reallife objects	Bar model with real life objects/pictorial objects/representative objects e.g. counters	Bar model with counters /Dienes progressing to numbers	Bar model with numbers			
Numicon shapes						
			Cuisenaire rods	Cuisenaire rods	Cuisenaire rods	Cuisenaire rods
Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount

Classroom/Learning Wall visual prompts

Foundation	Year 1/2		Year 3/4		Year 5/6
Big focus 10	Big focus 20	Big focus 100			
Numicon number line with Numicon shapes	Numicon number line with Numicon shapes	Numicon number line	Fractions number line	Fractions and decimals number line	Fractions, decimals and percentages number line
	Odd and even numbers				Prime, square and cube numbers
	Number pairs totaling 10 Number pairs totaling 20	Multiples of 10 totaling 100	Number pairs totaling 10 Multiples of 10 totaling 100		
0 - 10 number line / track	0-20 number line	0-100 number line	Number line including negative numbers		Number line including negative numbers
	100 square		100 square		
Real coins Large coins	Real coins Large coins		Real coins Large coins		Real coins Large coins
	1, 2, 5 and 10 times tables	3 and 4times tables	All times tables up to12×12		All times tables up to 12×12
			Roman numerals		Roman numerals
		<, > and = signs	< , > and = signs		<, > and = signs
Real-life / pictorial fractions	Real-life / pictorial fractions	Fractions including fraction number line/wall	Fractions including fraction number line/wall		Fractions, decimals and percentages including fraction number line/wall
					BIDMAS
2d and 3d shapes	2d and 3d shapes		2d and 3d shapes		2d and 3d shapes

Progression in the teaching of counting in EYFS

Subitising (recognise small numbers without counting them)

Children need to recognize small amounts without counting them e.g. dot patterns on dice, dots on tens frames, dominoes and playing cards as well as small groups of randomly arranged shapes stuck on cards.

$\therefore \therefore \therefore \quad \therefore$

Provide children with opportunities to count by recognising amounts

- $\quad: \quad$
.

Abstraction

You can count anything - visible objects, hidden objects, imaginary objects, sounds etc. Children find it harder to count things they cannot move (because the objects are fixed), touch (they are at a distance), see that move around.

Children also find it difficult to count a mix of different objects, or similar objects of very different sizes.

Abstraction ideas

How many pigs are in this picture?

Provide children with a variety of objects to count

Conservation of number
End of year counting expectations

Ultimately children need to realise that when objects are rearranged the number of them stays the same.

- count reliably to 20
- count reliably up to 10 everyday objects
- estimate a number of objects then check by counting
- use ordinal numbers in context e.g. first, second, third
- count in twos, fives and tens
- order numbers 1-20
- say 1 more/ 1 less than a given number to 20

Progression in the teaching of place value

Foundation Understanding ten	Y1 Understanding numbers up to 20	Y2 Understanding numbers up to one hundred	Y3 Understanding numbers up to one thousand
Use tens frames flash cards daily to ensure children recognise amounts. Use empty tens frames to fill with counters to enable children to understand number relationships. Either fill the tens frame in pairs or in rows. In rows shows 5 as a benchmark. Children can easily see more than 5 or less. Include other visual images such as dice, cards, dominoes etc.	Ten-frames provide a first step into understanding two-digit numbers simply by the introduction of a second frame. Placing the second frame to the right of the first frame, and later introducing numeral cards, will further assist the development of place- value understanding. 10 4	Continue developing place value through the use of tens frames.	Continue developing place value through the use of manipulatives. Use Dienes blocks and gattegno Charts

Progression in the teaching of place value

Regrouping to make 10	Using ten frames and counters/cubes alongside Numicon $6+5$ $\begin{array}{l\|l\|l\|} \hline 0 & 0 & 0 \\ \hline \end{array}$ θ 8 0 8	Children to draw tens frame and counters. Use number line $9+5=14$ 114	$7+4=11$ If am I at seve do I need to (Partitioning skill) How many mo now?	w many more 10 ? mbers is a key I add on	
TO + O	Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dots for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$	$+\frac{41}{48}$	

Progression in Multiplication

\begin{tabular}{|c|c|c|c|c|}
\hline Objective and Strategies \& Concrete Build it \& \begin{tabular}{l}
Pictorial \\
Draw it
\end{tabular} \& Abstract Solve it \& Vocabulary \\
\hline Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
Double 5 is 10 .
\[
5 \times 2=10
\]
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8

\square
\square

 \& Partition a number and then double each part before recombining it back together. \&

X

Double

pairs

Doubling

Multiplication

Multiply

Multiplied by

Multiple

Common multiple

Array

Row

column

Number pattern
\end{tabular}

\hline Counting in multiples \& Count in multiples supported by concrete objects in equal groups. \& Use a number line or pictures to continue support in counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. |
| $2,4,6,8,10$ $5,10,15,20,25,30$ | \& | Groups of |
| :--- |
| Lots of |
| Sets of |
| Times |
| Once, twice, three |
| times.....twelve |
| times |
| Repeated addition |
| How many |

\hline
\end{tabular}

Progression in Division				
Objective and Strategies	Concrete Build it	Pictorial Draw it	Abstract Solve it	Vocabulary
Sharing objects in to groups	I have 10 cubes, can you share them equally in 2 groups? If we are dividing by 2 we are finding a half.	Represent sharing pictorially	One half of 14 is 7 $1 / 2$ of $14=7$ $14 \div 2=7$ Share 9 buns between three people. $9 \div 3=3$	\div divided by division divided into divide dividing divisible by repeated subtraction grouping and sharing share
Division as grouping repeated subtraction	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $96 \div 3=32$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?	shared between share equally equal equal groups equal to group groups of quotient divisor dividend remainder factor common factor factor pairs short division long division proportion per fair half halve how many even

Concrete - Children will be taught the concept of multiplication using practical resources.	Pictorial - Children will progress on to using number lines or pictures.	Abstract 1 - Children will count in multiple steps.	Abstract 2 - Children will recite times tables by rote. Links will be made with 'grouping' and division whilst times tables are being taught
Count in multiples supported by concrete objects in equal groups. Use real-life arrays or build arrays.	Use a number line or pictures to continue support in counting in multiples	Count in multiples of a number aloud. Use a counting stick. Write sequences with multiples of numbers.$\begin{aligned} & 2,4,6,8,10 \\ & 5,1015,20,25,30 \end{aligned}$ $1 \times 7=7$ $7 \div 7=$ $2 \times 7=14$ $14 \div 7=$ 2 $3 \times 7=21$ $21 \div 7=$ 3 $4 \times 7=28$ $28 \div 7=$ 4 $5 \times 7=35$ $35 \div 7=$ 5 $6 \times 7=42$ $2 \div 7=$ 6 $7 \times 7=49$ $9 \div 7=$ 7 $8 \times 7=56$ $56 \div 7=$ 8 $9 \times 7=63$ $63 \div 7=$ 9 $10 \times 7=70$ $70 \div 7=10$ $11 \times 7=77$ $77 \div 7=1$ 1 $12 \times 7=84$ $84 \div 7=12$ Record multiplication number sentences. Link multiplication and division facts.	Recite times tables by rote orally. 3 times 3 equals 9 so 9 divided by 3 equals 3 . One third of 9 equals 3 . If you know 3 times 3 equals 9 , what else do you know? $3 \times 30=90 \text { etc. }$

