Developing fluency with times tables

Don't practise until they get it right... practise until they can't get it wrong!

\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{2}$	0	2	4	6	8	10	12	14	16	18	20	22	24
$\mathbf{3}$	0	3	6	9	12	15	18	21	24	27	30	33	36
$\mathbf{4}$	0	4	8	12	16	20	24	28	32	36	40	44	48
$\mathbf{5}$	0	5	10	15	20	25	30	35	40	45	50	55	60
$\mathbf{6}$	0	6	12	18	24	30	36	42	48	54	60	66	72
$\mathbf{7}$	0	7	14	21	28	35	42	49	56	63	70	77	84
$\mathbf{8}$	0	8	16	24	32	40	48	56	64	72	80	88	96
$\mathbf{9}$	0	9	18	27	36	45	54	63	72	81	90	99	108
$\mathbf{1 0}$	0	10	20	30	40	50	60	70	80	90	100	110	120
$\mathbf{1 1}$	0	11	22	33	44	55	66	77	88	99	110	121	132
$\mathbf{1 2}$	0	12	24	36	48	60	72	84	96	108	120	132	144

$\mathbf{1 0 x}$ Move one place value bigger and use zero as a place holder. Doubles, even numbers Partition, double and recombine for larger factors.	The ones' value is 5 or 0 . Multiply by ten and halve for larger factors.	$4 \times$ Double and double again.	0 x Anything multiplied by zero is zero.	$1 \times$ The other factor stays the same.
$3 x$ and $6 x_{r}$ All multiples of 3 have a digital root of 3,6 or 9 e.g. 27 is a multiple of 3 because $2+7$ is 9 . Even multiples of 3 are also multiples of 6 . 8 x Double, double and double again to multiply large numbers by 8 . Or Multiply by 10 and subtract 2 groups.	9 x Repeated addition pattern: add ten then subtract one. Multiply by ten then subtract one group. The digital root is always 9. Learn the finger trick.	11 x Repeated addition: add a ten and a one. Multiply: multiply by ten then add one group.	$12 \times$ or more Partition and multiply then recombine.	It is helpful to learn some 'tricky' facts by heart using mnemonics. e.g. 8 and 8 are sick on the floor $\begin{aligned} & (8 \times 8=64) \\ & 7 \times 7=49, \end{aligned}$ one short of 50 all the time $56=7 \times 8$ (consecutive numbers)

